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Making the same consideration as done by other 
authors15'19 and considering the nitrogen nucleons as 
equally probable photopion sources for high-energy 
photons, we have deduced the total cross section per 
equivalent quantum for the T * photoproduction from 
free nucleons. In the case of the reaction y+n —»ir*~+p, 
we have considered also the ratio TT~/IT+ for free nucleons 
obtained by Pine and Bazin20 from the photoproduction 
from deuterium. The total cross section calculated gives 
agreement within 15% with the experimental value 
(388±65)Xl0-3 0cm2 . 

The calculated values for the cross section per 

17 We have used for this purpose the value of the cross section 
versus Ey given for these reactions by Komar et al. (Ref. 1). 

18 A. N. Gorbunov and V. M. Spiridonov, Zh. Eksperim. i Teor. 
Fiz. 33, 21 (1957) [English transl.: Soviet Physics—JETP 6, 16 
(1958)]. 

19 C. E. Roos and V. Z. Peterson, Phys. Rev. 124, 1610 (1961). 
20 J. Pine and M. Bazin, Phys. Rev. 132, 2735 (1963). 

I. INTRODUCTION 

TH E theory of scattering beyond the two-body 
problem has recently been the subject of vigor­

ous attack from many quarters. This is not surprising 
in view of the wide importance of the problem and the 
rudimentary state of the theory. Some of the recent 
efforts have been devoted to putting the formal situa­
tion in order for the full problem,1 but these develop-

* Supported in part by the National Science Foundation. 
1 L . D. Faddev, Zh. Eksperim. i Teor. Fiz. 39, 1459 (1960) 

[English transl.: Soviet Phys.—JETP 12, 1014 (1961)]. C. A. 
Lovelace, Lecture Notes for the Edinburg Summer School, July 
1963 (unpublished); S. Weinberg, Phys. Rev. 133, B232 (1964). 
L. Rosenberg, ibid. 134, B937 (1964). A model similar to our 
potential limit has been studied in a different context by A. N. 

equivalent quantum and per nucleon for pion produc­
tion gives the same agreement with the measured values 
of (328±60) X 10~30 cm2 for photostars with one charged 
pion and (52±13)X10~30 cm2 for photostars with a 
pion pair. 

These results confirm the considerable contribution 
of the light nuclei to the process of photodisintegration 
in nuclear emulsion, and confirm the hypothesis that at 
high energies, the photoproduction of real pions occurs 
on the individual nucleons also in the case of complex 
nuclei. The reabsorption of the real w± mesons photo-
produced was found to be negligible with our experi­
mental resolution. 
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ments do not remove the essential difficulties associ­
ated with going beyond the two-body problem even 
in classical physics, namely the extra degrees of freedom. 
I t may be that computers will soon enter a stage where 
the full three-body problem can be computed "exactly," 
but that stage has not yet arrived. 

A more modest approach in which the three-body 
problem is simplified to the point where "exact" com­
putation is possible has recently been introduced by 
one of us.2 In this paper, we present calculations based 

Mitra. See A. N. Mitra, Nucl. Phys. 32, 529 (1962) and A. N. 
Mitra and V. S. Bhasin, Phys. Rev. 131, 1265 (1963). 

2 R. D. Amado, Phys. Rev. 132, 485 (1963), hereafter referred 
to as A. 

P H Y S I C A L R E V I E W V O L U M E 1 3 6 , N U M B E R 3 B 9 N O V E M B E R 1 9 6 4 

Model Three-Body Problem* 
R. AARON 

Department of Physics, Northeastern University, Boston, Massachusetts 

AND 

R. D. AMADO AND Y. Y. YAM 

Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 
(Received 24 June 1964) 

Solutions are obtained for a three-dimensional model three-body problem involving a spinless D particle 
and a spinless n particle with coupling D *± n-\-n. D-n scattering and D-n bound states are studied. The 
model is soluble in the sense that one obtains a linear, one-dimensional Fredholm equation for each partial 
wave in n-D scattering. We have solved the equations numerically on a high-speed computer for different 
values of the interaction strength and for different values of a size parameter used in the interaction form 
factor. In particular, we have studied the interaction-strength limit which corresponds to making the D a 
bound state of the ns. In this limit there are two three-body bound s states. The n-D scattering phase shifts 
obey a Levinson's theorem and also show the expected kink at the threshold for n-\-D —> 3n. The angular dis­
tribution for n-D scattering has considerable variation and shows the backward peak characteristic of an ex­
change mechanism. When parameters are chosen in the model to make the D fit the deuteron, the major 
features of nucleon-deuteron scattering are reproduced except at very low energies when the three-particle 
bound states dominate and our neglect of spin is important. 
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on that theory. These are presented not primarily as 
an approximation to some actual physical situation, 
but rather as a theoretical model in which the three-
body aspects are exactly treated. Our main concern is 
to explore the exact consequences of allowing three 
bodies to interact and to study these as a function of 
the parameters of the model. To that end we take the 
simplest possible version of the theory. It is note­
worthy that even in this version, in which two-body 
scattering is simple, the three-body amplitude is quite 
rich in structure. 

The model deals with the world of a spinless particle, 
n, and another, Z). The particles are named for the 
nucleon and deuteron, but resemble them in little else. 
Section IV is devoted to a comparison of our results 
with the three-nucleon system for orientation, but we 
stress again that we are not primarily concerned here 
with making a model of it. The interaction allows 
only the process D <=± n+n. Both n and D are free to 
move and are assigned nonrelativistic energy-momen­
tum relations. Thus n-n scattering occurs only in s 
states, since the interaction always forces the n-n sys­
tems into the D intermediate state. The scattering is 
characterized by the strength and form factor of the 
n-n-D coupling and by e, the rest energy or binding 
energy of the D. This energy provides an energy scale 
to the problem.3 The coupling strength may take on 
all values from zero up to a critical value. These corre­
spond to variations in the wave-function renormaliza-
tion Z of the D between 1 and 0. In the limiting case 
of maximal coupling, Z is zero and the model is identi­
cal to a potential model in which the n-n interaction 
is a separable potential and the D is a bound state in 
that potential. For Z^O the potential analog does not 
obtain, since one can then weaken the n-n coupling by 
varying Z, but keeping the position of the D fixed. 
It is clear that this cannot be done in a separable-
potential theory. The form factor represents the spatial 
structure of the interaction; in the bound-state limit 
for the D, it is simply related to the bound-state wave 
function. In our computation, we take this to be of the 
Hulthen form4 and hence introduce another parameter— 
the range of the Hulthen function. Thus our model 
contains two parameters, the range of the Hulthen 
form factor, and the strength of coupling, or, equiva-
lently, the wave-function normalization of the D. Of 
course, in this model n-n scattering is trivially soluble. 
The point of the model is to turn it to n-D scattering, 
for which case one can derive an integral equation for 
the scattering amplitude.2 This equation is not trivially 
soluble, but because of the restrictive nature of the 
n-n interaction turns out to be more complicated than 
the Lippmann-Schwinger equation5 for potential scat-

3 We restrict ourselves to the use of a stable D. The case of 
Sn —> 3n scattering for unstable D is very interesting, and we 
hope to deal with it later. 

4 L. Hulthen and M. Sugawara, in Encyclopedia of Physics, 
edited by S. Fliigge (Springer-Verlag, Berlin, 1957), Vol. 39. 

5 B. A. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950). 

tering with a nonlocal energy-dependent potential. 
That is, the intermediate states, in the center of mass, 
are completely characterized by a single momentum 
vector, as are the intermediate states in the potential 
scattering equations. The equation can be solved on 
a high-speed computer by Fredholm methods after 
partial-wave analysis. 

The effective three-body "potential" as represented 
by the Born approximation, involves the exchange of 
an n from incoming D to incoming n to form the 
outgoing D; it is an "exchange potential" and is attrac­
tive in even partial waves and repulsive in odd. We 
look for three-particle s-wave bound states in this 
"potential" by finding the zeros of the Fredholm de­
terminant. In the case of maximal coupling (Z=0 
for D), there are two s-wave three-particle bound states 
for all values of the Hulthen range searched. One is 
weakly bound and the other strongly bound; it is, in 
fact, much too strongly bound to represent the triton 
if the parameters of the D are fitted to the deuteron. 
If the coupling is weakened slightly, the weaker bound 
state disappears; but the other stays for a wide range 
of coupling. There are no p-w&ve bound states since 
the ^-wave "potential" is repulsive, and there are none 
in higher partial waves. The effect of keeping only the 
two-particle intermediate states on the positions of 
the bound states in s wave is investigated. It is found 
that even though the inelastic threshold may be far 
from the three-particle binding energy, leaving out 
the three-particle states makes a qualitative difference 
and is therefore a poor approximation. 

Since the second bound state is so near the scattering 
threshold for strong coupling, the s-wave scattering 
amplitude is very large at low energies. This is even 
true when the state is virtual but with opposite sign 
for the scattering length. For the s-wave n-D scatter­
ing, there is a kink at the threshold for n+D-^3n, 
and then a sharp minimum. This can be understood 
in terms of a generalized Levinson's theorem.6 Since 
for strong coupling there are two bound states, we can 
take the s-wave phase shift to begin at 2w, and we 
would then expect it to fall through 3ir/2 (antiresonance) 
IT and 7r/2 (antiresonance), arriving at zero for infinite 
energies. The point at which it passes T will be a zero 
of the real and imaginary parts of the amplitude in 
potential scattering. Since for strong coupling this 
point comes above the breakup threshold, the cross 
section is not exactly zero, but the closeness to thresh­
old makes the energy variation rapid. If the coupling 
is weakened so that there is only one bound state, the 
phase shift starts at TT, but rises and then falls back 
through T below the breakup threshold, giving a real 
zero. In both cases, the other partial waves mask any 
effect of this on the total cross section. 

The angular distribution shows the backward peak-

6 N . Levinson, Kgl. Danske Videnskab. Selskab, Mat. Fys. 
Medd. 9, 25 (1949). 
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ing associated with an exchange type of reaction, but 
has considerably more structure than just the Born 
approximation (as well as being generally much smaller). 
Typically, the angular distribution is of the sort ex­
pected for a direct reaction, with variation over two 
orders of magnitude. We have made no attempt to 
fit these with some of the modern approximation pro­
cedures, but such attempts would surely be interesting. 

At very high energies the amplitude tends to the 
first Born approximation. This will be demonstrated 
in a subsequent paper. This is true even if Z = 0 , for 
which case the Born series does not converge for any 
energy.7 In view of this, we have calculated only to 
energies sufficiently high that we are approaching the 
Born answer. 

In Sec. I I we present a summary of the model and 
the major points of our calculational method. In Sec. 
I l l the results for the bound state and scattering data 
are presented for various strengths of coupling and 
various Hulthen ranges. In Sec. IV the results are 
compared with the three-nucleon system, and in Sec. 
V there is a discussion of the results and future 

programs. 

II. CALCULATIONAL METHOD 

The integral equation for the n-D scattering am­
plitude in the center-of-mass system given in A is 
( * = 2 w = l ) : 

(k'\T(E)\k) 

= (k' | B (E) | k ) + — /W' (k ' | B (E) | k") 
(2TT)3 J 

S(E-ikm+e+iV) 
x ( k " | r ( J E ) k ) , (i) 

E-ik"*+e+iV 

where the Born function is 

, „ , M.X • /[(H-ik')2]/[(k'+!k)'] ^ 
(k' B(E) k) = T2 . (2) 

E - j > 2 + £ ' 2 + ( k + k ' ) 2 ] + M ? 
I t represents the basic n-D interaction involving the 
exchange of an n. The function 

[£ (* ) ] - != 1-
r2 

2(2TT)3 
x I dht-

f(n>) 

(2M2+e)20-e-2»2) 
(3) 

represents the sum of "bubbles" for D in intermediate 
states. The renormalization coupling constant V is 
related to the D wave-function renormalization Z by 

rz r 
2(2xW 

r2 r f(n2) 
dzn 

(2TYJ (2n2+e)2 

(4) 

f(q2) is the form factor for the n-n-D vertex; k, kf are 
7 R. Aaron, R. D. Amado, and B. W. Lee, Phys. Rev. 121, 319 

(1961). 

the initial and final n momenta. E is the total energy 
variable, and e is the D binding energy or rest energy. 

To solve the integral equation, we first make a 
partial-wave analysis: 

(k ' |T(E) | k ) = £ (2/+l)Pi(cos0)(*' |T l(E)\k) , 
o 

(k'|5(£)|k) = £ (2/+l)7Vcos0)(£'|iMW), (5) 
0 

cos0=k'.k/ife'£. 

There is no partial-wave projection for 

S(E-W'2+e+iv), 
which is a function of k"2 only. We obtain an uncoupled 
set of one-dimensional linear integral equations. For 
each partial wave we have 

(*'I r , (£)!*)=(*'| £,(£)!*) 
/•oo 

+ / dk"(k'\Kl(E)\k")(k"\Tl(E)\k), (6) 

where the kernel is 
(k'\Ki{E)\k") 

k"2 
S(E-ik'n+e+iv) 

= —ik'\Bt(E)\k") . (7) 
2^2 (E-lk'n+e+in) 

The equation can be cast formally into an inversion 
problem: 

dknlb{kf-kff)-{kf\Kl{E)\kff)^X(kff\Tl{E)\k) 

= (* , |5«(£) |*) ." (8) 

This is the starting point of our calculations. However, 
there are, in general, complications due to the complex 
nature of singular points in the kernel. So, we turn 
first to a discussion of the parameters and functions 
associated with the equation. 

The interaction is characterized by e, T, Z, and 
f(q2). Among these, e is chosen as the energy scale 
and is set at e—1.5 for all calculations. Moreover, since 
T and Z are related through (4), only Z and f(q2) are 
adjustable. The choice of f(q2)~l has been discussed 
in A, where it is shown that a singular integral equa­
tion results when Z = 0 . In this paper, we choose a 
Hulthen form4 for i t : 

/(g2) = l / (9
2+/32) , (9) 

where 0 is an adjustable parameter and is qualitatively 
the inverse range of the n-n potential in configuration 
space. Since f(q2) is related to the internal momentum 
distribution function 4>((f) of D when Z = 0 by 

r W ) = (2<M-£)0(<z2), (10) 
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we restrict /5 to values where /52>|e. Note that we are 
keeping the D binding energy e constant when we 
vary ft. 

For each value of /, the solution of the integral 
equation is a T-matrix element, (k'\Ti(E)\k), which 
is a function of 3 variables, k\ k, and E. The physical 
n-D scattering amplitude is a particular one of these 
solutions corresponding to kf = k and E=3k2/2 — e. There 
is no need to find such general off-the-energy-shell am­
plitudes. For n-D scattering, we fix the energy variable 
on the incident momentum via the relation E — 3k2/2 — e. 
Now, the integral equation involves only two variables, 
kf and k. However, for the bound-state problem as­
sociated with the n-D system, we do not fix E on k but 
treat it as a free variable with a range E< — e. The 
bound states, if any, of the n-D system are, of course, 
not explicitly exhibited in the integral equation be­
cause a complete set of eigenstates of the free Hamil-
tonian is used in the intermediate states. Rather, they 
emerge as dynamical consequences of the interaction 
parametrized by Z and p. 

With the vertex function given explicitly, we can 
evaluate all integrals involved in F2, (k'\Pi(E)\k), and 
S(E—p//2+e+tr?) and, with the specification of the 
energy variable in mind, discuss any complications 
which the functions may introduce into the problem. 
First, let us define for convenience some symbols: 

a=a(k',k;E)=k*+kn-hE-ir,, (11) 

esc(ft / , f t ; j8)ai*H-*' f+j8». 

Then we obtain the following results: 

(I) 

P = 647ra/3(a+/3)3(l-Z). (12) 

(Il.a) for fcVO and k^O, 

/r\(-l)'+X 1 1 / a\ 

(*'|J5,(£) *) = ( - ) Q{ — ) 
\ 2 / k'k Lb-ac-a \k'k/ 

+— -Q{—)+ 0 /4) l • (13a) 
c-ba-b \k'k/ a-cb-c Kk'k/J 

(II.b)forife'=Oor/& = 0, 

(*'|Bi(E) \k)=- (T»/2)(l/a&c)5i0, (13b) 

where Qi(z) is the Legendre function of the second 
kind. 

(Ill) We define 

tS(E-ik"t+*+iv)24ssZ+ (r2/327r)f, (14) 

FIG. 1. Section of intersecting ellipses locating 
singularities of the Born function. 

then, (a) for <r<0, f is real and is 

1 
f = 

1 
X I" + ] ; (15a) 

U+8 B+(-h<rY'2A 

(b) for o->0, f is complex and 

Ref= 
(a+p)(e+<T)(2p+a)L 2^2+(7 4^(a+/3) 

r2aP-~(T e+or n 

L262+a 48(a+(3)j' 

Imf= 
^/2<T1'2 

(15b) 

(e+vW+h? 

The analytic properties of the functions (kf \ Bi{E) \ k) 
and S(E—%k"2-{-e+irj) are now obtained from these 
relations. S(E~ §&//2+e+^?) has a cut in the complex 
E plane from 0 to °o. That it, in general, becomes 
complex for JS>0 is due to the "breakup" of the 
"bubbles" for D, that is, to the production of three 
real particles in the intermediate states (n+D—»3w), 
the threshold for this being E—0. From the properties 
of Qi(z) and the fact that for kf>0 and &>0, the two 
terms b/k'k and c/k'k are both greater than 1, we see 
that the Born function will be complex and will possess 
logarithmic and even pole (at k' = 0 or & = 0) singu­
larities when \a/k'k\<l. This occurs when E>0. 
However, the inhomogeneous Born function will be 
real for all values of E if we fix E on k via the relation 
E=3k2/2-e. Physically, that \a/k'k\<l for some 
values of E is a reflection of the fact that at this energy, 
a real n is being exchanged in the intermediate state. 
This again produces an absorptive effect on the 
elastic n-D scattering. Thus we see that the product 
(k'lB^lk^SiE-lk'^+e+irj) plays the role of an 
energy-dependent "optical potential" in the kernel 
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FIG. 2. s-wave Fredholm determinant as a function of energy 
below scattering threshold for 0 — 7 and various Z. (Units: 
# = 2w = l, €==1.5.) 

with the inelastic threshold at E=0. (The elastic 
^-Z) threshold is at E= — e.) 

In the actual computation, our treatment of the 
singular nature of the Born function may be summar­
ized by a diagram in h'-h" space. (See Fig. 1.) Two 
quarter ellipses are defined by the equations 

A'N-*"8±*'*" = i £ , E>0. (16) 

Within the area bounded by the two elliptic arcs, 
(k'\Bi(E)\k,r) is complex and is evaluated through 
a complex Qi(a/k'k/f). On the edges, it has, in general, 
a logarithmic singularity, which we "smooth out" by 
averaging Qi(a/kfk") over a thin strip about the edge. 
At the two intercepts on the kf and k" axes, the loga­
rithmic singularity develops into poles. There, for /=^0, 
the Born function is zero from (13b). For 1=0, the 
Born function is set equal to zero at the pole on the 
k' axis but is evaluated as a genuine pole on the k" 
axis. The asymmetry in treatment arises from phase-
space factor k"2 for the intermediate state in the kernel. 

Having discussed the singular points encountered in 
the evaluation of the kernel, we return to the inversion 
problem. With the choice of the vertex function, f(q2), 
it is easy to see by power counting that the kernel is 
sufficiently convergent for the Fredholm method of 
solution to apply. For any fixed value of I and k, we 
approximate the integral of (8) by a finite sum using 
Simpson's rule. The kernel is evaluated in k'-k" space 
on a square mesh of NX>N points. Equation (8) now 
becomes a matrix equation. 

For the bound-state problem, k need not be specified. 
We treat E as a free variable, and search for zeros of 
the Fredholm determinant Di(E) below the elastic 
threshold E= — e. The kernel is real for E< — e> and 
the Fredholm determinant is 

where Ktj(E) is proportional to the kernel evaluated 
at the mesh point (k\,k"3). The position of the zeroes 
gives the bound-state energies, which depend on the 
parameters fi and Z. We assume the Fredholm nu­
merator does not vanish at the zero of Di and hence 
that these zeros are actual bound states. 

In n-D scattering, we set E=3k2/2 — e. The inhomo-
geneous Born function is real but the kernel is now 
complex. For E<0> there is only one pole—the n-D 
propagator pole—to integrate over, while for E>0, 
there is an additional pole when 1 = 0 from the Born 
function at k' = 0. The numerical integration over the 
pole is treated in the usual way. Now the kernel can 
be evaluated everywhere on the mesh points. The in­
version8 of the matrix equation yields for given value 
of k and / a complex vector which is a sequence of 
off-the-energy-shell amplitudes (k\ \ Ti(E) \ k). The phys­
ical amplitude is, of course, the one with k'i = k. 

III. RESULTS 

A. Bound States 

We here examine the position and number of three-
body bound states for our model as functions of 0, the 
Hulthen range parameter, and Z, the wave-function 
renormalization constant of the D. We do this by 
methods discussed in the previous section; namely, 
by searching for zeros of the Fredholm determinant 
Di(E)oi Eq. (17). 

Inherent inaccuracies in our programs and technical 
difficulties associated with the computer prevent us 
from examining certain values of our parameters and 
variables. For example, {$ much greater than 15.0-20.0 
requires too large a range of integration to be practical. 
For values of ($ less than 2.0-1.5 and/or the energy E 
too close to —1.5 (the elastic n-D threshold), the 
kernel of the integral equation becomes very peaked 
near the origin, and the matrix inversion routine fails 
to give satisfactory results. Nevertheless, we quote 
results in these unattainable limits on the basis of 
trends established by the machine. We feel this is 
justified because of the empirically established smooth 
behavior of the quantities in question as a function of 
the parameters, and also because an examination of 
the analytic structure of our equations indicates the 
unlikelihood of any spectacular effects in the limits 
mentioned. 

The results of our computations are shown in Figs. 
2-11. In Fig. 2, Di(E) for the s wave is shown as a 
function of E for various choices of Z and with j3= 7.0. 
Di is one for very large negative E, and for attractive 
potentials curves toward zero as E increases. Each 
zero of Di indicates the position of a bound state. In­
creasing Z away from zero represents weakening the 
effective n-D interaction, and the effect of this on Di 

Di(E) = detldij-Kij(E)\ (17) 
8 In our computation, we use an IBM matrix subroutine which 

employs the elimination method. 



M O D E L T H R E E - B O D Y P R O B L E M B65S 

is clear in the figure. In particular, the bound states 
become less bound as Z increases. The cusp in D at 
the elastic-scattering threshold is due to a square-root 
singularity. 

In the Z=0 limit, the s-wave n-D interaction pro­
duces two three-particle bound states for all values of 
the Hulthen range. That at least one should occur 
with a binding energy greater than that of D is not 
surprising, since Z=0 corresponds to the potential 
limit, and if the potential between pairs is strong 
enough to produce a two-body bound state, it should 
surely produce a three-body bound state, provided the 
Pauli principle does not operate, as it does not in our 
case. In higher partial waves, there are no three-
particle bound states, since the "exchange potential" 
is repulsive in p waves and not strong enough in d 
waves. 

The effect of varying Z on the s-wave bound states 
is shown in Fig. 3 for 0 = 5. One bound state quickly 
disappears as the coupling is weakened (Z becomes 
greater than zero), and the second moves toward the 
elastic scattering threshold and finally disappears for 
Z«0.7. For Z ^ 1, the nn-D coupling is very weak, per­
turbation theory presumably holds, and there is no 
three-particle bound state. We have not studied this 
featureless limit. 

Since these are s-wave bound states, the zero of 
Do(E) corresponding to them moves through the square-
root branch cut at the elastic-scattering threshold and 
back along the negative E axis on the second sheet, 
now corresponding to a virtual state, as the coupling 
is turned down. That is, they do not become resonances. 
We have not searched carefully to preclude the possi­
bility that they return for even weaker coupling to 
resonant positions, but this seems unlikely. In fact, 
anticipating, we can say we have found no choice of 
parameters which gives a three-particle resonance in 
any partial wave. As the bound states disappear, the 
n-D scattering length goes through infinity and changes 
sign. 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
BINDING ENERGY 

FIG. 3. Three-particle binding energy as a function 
of Z for /3 = 5. (Units: # = 2m = 1, e = 1.5.) 

FIG. 4. Three-par- I 
tide binding energy as ! 
a function of p for Z 20! 
=0 . Right-hand scale £ \ 
refers to less tightly | 
bound state and left- £ j 
hand scale to more § 
tightly bound. (Units: § 
# = 2m = l, e=1.5.) 'o 

~i—i—i—r~r 

Less Tightly Bound State 
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The effect of varying 0 and keeping Z zero on the 
s-wave bound states is shown in Fig. 4. It is clear that 
increasing 0 corresponds to increasing the effective n-D 
interaction strength. Since the position of the D bind­
ing energy is kept fixed at the same time, the strength­
ening is being achieved by shortening the range (°c 1/0) 
of the two-body force but increasing its strength. Since 
the three-particle states are much more compact than 
the two-particle states, they are much more sensitive 
to this. In particular, one would expect the more 
tightly bound three-particle state to respond quite 
strongly to this short-range potential, and it does. All 
indications are that its binding energy goes to minus 
infinity as 0 goes to infinity. This limit on 0 corresponds 
to making the form factor in (9) identically one, since 
as we increase 0 but keep the D binding fixed and Z=0, 
the coupling constant will also grow at just the proper 
rate. We should expect just this, since for / = 1 the 
equation cannot be solved by Fredholm methods, and 
the existence of an infinite-energy "bound state" means 
that the homogeneous integral equation has solutions 
for large energy which are not determined by the Born 
approximation. These are probably diffraction solu­
tions, but we have not yet established this. 

It would be of great interest to check these exact 
results against various currently popular approxima­
tion schemes. We have not done this in general, but 
one simple check we have carried out is to do the 
calculation with S= 1 in (3).This corresponds to neglect­
ing three-particle intermediate states, while two-particle 
states are still treated correctly, including two-particle 
unitarity. According to the principle of dominance of 
closest singularities, this neglect should not be very 
serious for bound states, so long as the elastic-branch 
cut is correctly put in, as it is. The effect of doing the 
calculation with 5 = 1 is compared with the correct 
result for D0 with 0=5 and Z=0 in Fig. 5. We see 
that the actual system has two bound states, one 
quite tightly bound, whereas the approximate one has 
only one relatively weak bound state. Hence, neglecting 
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FIG. 5. Effect of neglect of three-particle states on s-wave 
Fredholm determinant for 0 = 5, and various Z. Full curves are 
exact and dotted curves with no three-particle states, S=l. 
(Units: ^ = 2 ^ = 1, € = 1.5.) 

the three-particle intermediate states weakens con­
siderably the effective n-D potential. 

B. Scattering 

The scattering amplitudes for each partial wave 
have been computed according to the procedure out­
lined in Sec. I I , and the results are partially sum­
marized in Fig. 6 where the real part of the phase 
shifts are presented for the first three partial waves 
and for various choices of Z and ft. Below the production 
threshold, E=0, the phase shift is real; above pro­
duction the real part is defined by9 

tan[Refc(£)]= 
ReT/ 3TT 

ImTi kReTi 

X 
f r 2k/ k 

1-1 1+—(lmr«+—|T|| 
37T\ 6TC )]'!• (18) 

r^(£ |r z(£=p2-e) |£) , 

where the appropriate branch of the arctan is taken 
to give a continuous curve. The effect of breakup is 
noticeable in the kink in the s-wave phase shift at 
threshold. We have normalized the phase shifts to 
zero at infinite energies, and for Z = 0 this leads to an 
s-wave phase shift of 2ir at zero energy. This is what 
we would expect naively from Levinson's theorem,6 

since there are two s-wave bound states for Z = 0. 
Even though Levinson's theorem has not been shown 
to be valid for three-particle scattering, some form of 
it almost certainly is. The s-wave phase shift of Fig. 
6 for Z = 0 is about as simple a one as one can imagine 
consistent with these conditions: 2ir at zero energy, a 
kink at the inelastic threshold, and zero at infinite 

9The elastic unitary relation is ImTj — — (k/6w)\Ti\2, 

energies. All that can change is its rate of fall. We 
have not investigated this in detail, but, from the 
points we have in the figure and from the discussion 
of the previous section, it is clear that larger /?, corre­
sponding to a stronger but shorter range two-particle 
potential, makes the phase shift fall more slowly, and 
smaller ft makes it fall more rapidly. 

For Z=0.145, 0=5, there is only one three-particle 
bound state and the s-wave phase shift begins at w. 
Now, however, the scattering is dominated by a nearby 
virtual state at low energy and the phase shift starts 
with positive slope. At higher energy it turns over and 
falls to zero slowly. For even larger Z, the virtual 
state would move out and the other bound state come 
closer to threshold, and the phase shift would begin at 
7r with negative slope. For Z near 1, the phase shift 
would start and end at zero. Presumably the effect of 
varying /5 on all these cases would be as in the case of 
Z = 0 ; i.e., increasing 0 slows the energy variation of 
the phase shift. 

For p waves, the phase shift is negative, since we 
have an effective n-D aexchange potential." Since there 
are no ^-wave bound states, nothing very dramatic 
happens when we vary Z. Although the results are not 
shown, there are also no startling results of varying /?. 
In d waves the force is attractive, but not very strong, 
and this is reflected in the relatively small phase shifts 
and small sensitivity to Z. 

Above the breakup threshold, the cross sections 
cannot be computed from the real part of the phase 
shift. However, both the elastic-scattering cross section 
and the total cross section can be determined from the 

-ijy> 

!»0,/9«5tZ«0 

^ C ^ ^ i « 0 , j 8 * 5 , Z « . l 

£b,£«5,Z».l45| 

k>lnelastic Threshold 

l»2,ft*5tZ*0 

i*l,0*5,Z*<r 

FIG. 6. Real part of the n-D phase shift as a function of energy 
for various /, (3, and Z. (Units: h~2m = 1, e = 1.5.) 
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FIG. 7. Partial-wave cross sections versus energy. The solid 
curves are the total cross section, the dotted the elastic only. 
For / = 0, Z = 0.145 the cross section falls under the 1 = 2, Z = 0 
above the inelastic threshold, and therefore we do not show it. 
All curves are for /3 = 5. (Units: #=2m = 1, €=1.5.) 

scattering amplitude and unitarity, and since there is 
only one inelastic channel, the breakup cross section 
can be obtained from these. The elastic-scattering and 
total cross sections for each partial wave are shown in 
Fig. 7 up to 1=2 for /3 = 5. The kink in the s wave at 
threshold is clearly visible. The effect of varying Z is 
shown only for the 5 wave, where it is dramatic. The 
very small cross section for Z=0, Z=0.145 at low 
energies is due to the way in which the phase shift, for 
this set of parameters, stays near -w. For Z = 0 , the 
s-wave phase shift crosses T above breakup threshold, 
and therefore there is a minimum, but no true zero in 
the elastic scattering at this point. In the other partial 
waves, increasing Z just reduces the cross section. 

In general the breakup cross section—the difference 
between the total and elastic-scattering cross sections— 
is relatively small in the region examined. At higher 
energy they will both go to zero, the inelastic more 
rapidly than the elastic, since at very high energy the 
Born approximation dominates, and it is pure elastic. 

The scattering data can also be reassembled into 
angular distributions. One such for an energy E 
= —0.914 (below breakup) and 0 = 5 is shown in 
Fig. 8. From Fig. 6, it is clear that for Z = 0 at this 
energy we have mostly s and p waves, and with op­
posite sign. This accounts for the backward peaking 
(exchange potential). For orientation, the Born ap­
proximation is also shown. I t is relatively flat, and a 
factor of 15 larger than the correct answer. In plotting 

the exact curve in Fig. 8, the Born approximation has 
been used for the partial waves above 1 = 3. The addi­
tion of these waves has little effect. For Z=0.145, the 
major change in Fig. 8 is to put the s-wave phase shift 
near 7r. Since the d wave is small at this energy, the 
angular distribution now dips to essentially zero at 90°. 

At higher energy, the imaginary part of the ampli­
tude is relatively more important, and hence the for­
ward peak grows since the imaginary parts are all of 
the same sign. This is seen in Fig. 9, which gives the 
angular distribution for E=4.835 and 0 = 5 . For Z = 0 
the near symmetry about 90° is due to the fact that 
the s-wave phase shift is near ir and the p wave is left 
to dominate. For Z=0.145, only the s wave changes 
much, and the effect of this is to push the minimum 
to backward angles. I t should be noted that at this 
energy the angular distribution varies over a factor of 
10. The Born term is again shown for comparison. 

IV. NUCLEONS, DEUTERONS, AND TRITONS 

Our model is, if not based on, at least inspired by the 
actual three-nucleon system, and it is therefore illumi­
nating to try our results against those of that system. 
Since nucleons are not spinless bosons, we should not 
expect close agreement with experiment; but to the 
extent that nucleon exchange is the main source of the 
force between nucleon and deuteron—and it presuma­
bly is, because of the diffuse nature of the deuteron— 
the major trends of the nucleon-deuteron system should 
be reproduced. 

0 20 40 60 80 100 120 140 160 180 
CM. ANGLE IN DEGREES 

FIG. 8. Angular distribution at E— —0.914 and 
j3 = 5. ( U n i t s : # = 2 ^ - 1 , ^ = 1,5.) 
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FIG. 9. Angular distribution £ = 4.835 and (3 = 5. The mixed 
choice of Z for the one curve is motivated in Sec. IV. (Units: 
ji=2m = l, e=1.5.) 

The correct characterization of the two-particle 
coupling is now given, of course, by Z—0—the deuteron 
is a pure bound state. Furthermore, we take 13=5. This 
choice of parameters, plus putting h, m, etc., back in, 
gives a good fit to the low-energy two-body data in the 
triplet state. However, it gives two three-particle s-
wave bound states, of which one is much more tightly 
bound than the triton. This is partly a result of the 
neglect of spin. I t is probably not a bad approximation 
to say that the spatial wave function of the triton is 
symmetric, but all pairs do not interact in triplet 
states, and the singlet force is weaker than the triplet. 
Furthermore, our characterization of the force does not 
include any saturating parts such as hard cores. These 
are presumably more important in the three-body sys­
tem than in the two-body system since the triton is 
more tightly bound and the pairs spend more of the 
time close together in it. That is, while nucleon ex­
change might be the principal mechanism for n-D scat­
tering at moderate energies, in the relatively compact 
triton, more complex interactions are also important. 
We are presently setting the problem up with spin and 
with the singlet-triplet difference, and are able to 
report on the importance of at least this sophistication. 
Hard cores can also be included, but it is more difficult. 

To some extent, both the effect of the short-range 
repulsion and the singlet-triplet difference can be simu­
lated by weakening the interaction in our model. I t 
should be recalled that we can do this by increasing Z 
without changing the value of the deuteron energy. 

For Z=0.145, the weakly bound three-particle bound 
state disappears, and the other has the correct binding 
energy for the triton. Of course, changing Z from zero 
reduces the coupling constant at the D +=z n-\-p vertex, 
and therefore the nucleon exchange graph will not 
have the correct residue at its momentum-transfer 
pole. On the other hand, placing the triton correctly 
gives the correct position and residue to the pole in the 
energy corresponding to the triton. At low energies for 
n-D scattering this would be important, whereas at 
higher energies getting the exchange graph right should 
be more important. Since we have no spin, however, 
we cannot give separately the scattering in quartet 
and doublet states; nor are these separated experi­
mentally. The triton comes only in the doublet state, 
and fitting its pole correctly is therefore not a big help 
in fitting experiments. This argument is to excuse the 
fact that we do not get even a qualitative fit to n-D 
scattering at low energies with Z = 0 or Z = 0.145. To 
some extent we can have both poles fit nearly correctly 
by putting Z=0.145 for the s wave and Z = 0 for the 
other partial waves. From Fig. 6 it is clear that the 
difference between zero and 0.145 for Z is not very 
important beyond s waves. We use this hybrid theory 
to compare with experiment for the three-nucleon 
system. Strictly, our theory should have no free pa­
rameters, since /? and Z can be fixed by the two-body 
data, but putting Z = 0.145 for s waves corresponds to 
making one adjustment—fitting the triton. 

The experimental results for the total n-D scatter­
ing cross section and our results are shown in Fig. 10.10 

The agreement is not startling, particularly at low 
energies, where the scattering lengths are incorrectly 
given, for the reasons already elaborated. However, at 
higher energies the trends and the order of magnitude 
are certainly reproduced. The angular distribution at 

I Experiment 
o Z«0,all SL 
A Z«.I45,/«0;Z»0, 4>0 
x Z».l45,alU 
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FIG. 10. Total cross section for neutron-deuteron scattering— 
experiment and theory. Only the points are calculated; the 
curves are drawn in for convenience. 

10 R. J. Howerton, University of California Radiation Labora­
tory Report, UCRL 5226 Rev., 1959 (unpublished). 
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FIG. 11. Angular distribution for neutron-deuteron scattering at 
14.1 MeV—experiment and theory. 

14.1 MeV is as shown in Fig. II.11 The theoretical 
curve is the same as Fig. 9 with the units put in. Once 
again, we see that the major features of the data, as 
well as their order of magnitude, are reproduced. Both 
these agreements indicate that the qualitative features 
of the data are reproduced by the model and therefore 
that the principal mechanism is nucleon exchange. We 
are presently investigating the importance of adding 
spin. Hopefully this will improve things, particularly 
at lower energies. After that, however, refinements of 
the theory will presumably be much more difficult. 

V. DISCUSSION 

We have seen that the simple, soluble three-body 
model presented previously can be solved numerically 
and that the results are rich in the features of three-
particle systems in spite of the simplicity of the model. 
In fact, the model has qualitatively many of the 
features of the three-particle system it most nearly 
resembles—the three-nucleon system. There are now 
essentially two sorts of next steps one can take. One 

can try to improve the model's resemblance to actual 
physical systems, or one can try to use the method as 
a probe into three-particle systems in general. One of 
the most appealing avenues in this direction is to use 
it to test currently popular approximation techniques. 
We have already shown, for example, that ignoring 
three-particle intermediate states in the integral equa­
tion gives a bad approximation for the bound states. 
One of us (RA) is currently involved in solving the 
equations using elastic "N over D" techniques12 (these 
are approximate for the problem) in order to check 
them. Other such tests would be interesting. 

Another program is connected with the question of 
unstable two-particle systems and their effect on the 
three-particle system. This can be investigated by 
making the D unstable or by introducing C-D-D poles 
in the two-particle amplitude.13 Exact and approximate 
results of doing this would be interesting, as would be 
the occurrence in this way of three-particle resonances. 
We find none in our simple problem. 

From a more general point of view it would be 
valuable to extend and improve the formalism to allow 
a richer representation of the two-particle force—for 
example, in order to allow one to treat hard cores. The 
inclusion of spin in the problem is straightforward and 
has been done by us. Whether the coupled equations 
which this leads to will be simple and manageable on 
the computer remains to be seen. 

Having included spin, we can turn to a better model 
of the three-nucleon system. This is presently being 
done. Also the coupled-channel model of deuteron 
stripping presented in A is being computed. It will 
be interesting to compare the results of that calculation 
with the distorted-wave Born-approximation calcula­
tions. Going further afield, one might hope to investi­
gate electron-atom scattering, although here the large 
number of bound states—a manifestation of the long 
range of the force—makes our method difficult to 
apply. Whether any actual problems in particle physics 
can be solved in this way, as opposed to being investi­
gated formally as we outlined, remains to be seen. 
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